Basket

Monthly Archives

March 2019

Radon maps don’t show radon levels in a specific building

By Measurement, News No Comments

‘Radon maps’ is a term that frequently crops up when talking about the risk of radon. A radon map provides a general picture of the areas where there is a risk of high radon levels. These maps are available at both national and regional level. The problem with radon maps is, however, that they are a very blunt tool for anyone wanting to find out about radon levels in a specific building.

Despite this, Radonova is seeing a growing number of cases where private individuals and workplaces are using radon maps to try to determine the radon level in their specific indoor environment.

“Radon maps are designed to be used when you want a more general geographic breakdown of low-risk and high-risk zones. It is, however, very difficult to draw any reliable conclusions from these about radon levels inside a particular building,” comments Karl Nilsson, CEO of Radonova Laboratories.

“The relevant authorities and experts often have good knowledge of the applications for which radon maps can be used. Problems tend to arise when the general public draw conclusions from the maps about radon levels in their own home.”

This is why radon maps do not show radon levels in a specific building

Below are some of the reasons why radon maps are not a reliable tool for determining radon levels in a specific building.

Radon maps do not show local variations

When producing a radon map, very few measurements are performed per square kilometre. Radon levels can vary significantly in such a large area and also markedly between buildings on the same street. Radon levels indoors largely depend on the building’s construction and the air permeability of the soil, which can vary widely locally.

There is no standard for the production of radon maps

To produce a radon map, measurement data is either obtained by measuring ground radon levels or using data from indoor measurements in the area. With ground radon measurement there is no clear link between the level of radon in the ground and indoor radon levels. There is certainly an increased risk with high ground radon levels, but other factors, such as construction technology, can have a greater impact. However, if the radon map is based on indoor measurements, then the results are therefore heavily dependent on the type of building structure where the measurement was recorded. This in turn need not be relevant in any way for another building close by.

Radon can be emitted by building materials

In a country like Sweden the use of blue lightweight concrete is a clear example of how a building material comes into play when measuring radon levels. In Sweden around 15 per cent of all elevated radon values are caused by blue lightweight concrete. A radon map, however, does not take into account the material used in a building.

The maps can be generated from old measured values

Measured radon levels are to some extent ‘perishable’. A measurement taken 15 years ago, for example, is no longer reliable. A lot may have happened over the years in and around the building in question to change radon levels. Modernisations, changes to ventilation and groundwork are just a few examples of factors that can have a major impact on indoor radon levels. The Swedish Radiation Safety Authority recommends performing a new measurement every 10 years.

“With this in mind, you shouldn’t rely on radon maps if you want to know what the radon levels are in a specific building. Even if you live in an area that is defined on the radon map as a low-risk zone, there may still be very high radon levels indoors. Given that radon, after smoking, is the most common cause of lung cancer, there is every reason not to rely on this type of map when trying to determine radon levels in the home and at workplaces,” concludes Karl Nilsson.

Measure in the building

The only way to get a reliable picture of radon levels in indoor air is to measure them. This can be done in an affordable manner using radon detectors. Radon maps still have a role to play, however, as they can provide the authorities with an overview that makes it easier to prioritise inspection efforts.

Radon map

COIRA chooses radon detectors from Radonova for major international study

By Measurement, News No Comments

Radonova Laboratories will be providing radon detectors to a major international study to be run by COIRA (the Coalition of International Radon Associations). The aim of the project is to compare radon measurement results obtained by the world’s leading monitoring institutions in the field of radiation protection. The project started in August 2018 and will run for two years.

“This is a very important project. It will help us towards a more consistent way of working and greater precision in our work on radon measurements. COIRA provides a forum for the collective global expertise on radon. We are pleased to be an active part of this forum in terms of both measuring equipment and knowledge,” says Karl Nilsson, a member of the board of COIRA and CEO of Radonova Laboratories.
coira

Radonova’s radon specialist José-Luis Gutiérrez Villanueva is a member of the project committee. He is there as an expert and representative of ERA (the European Radon Association), one of the project’s scientific coordinators (COIRA). Gutiérrez Villanueva is also involved in the work of analysing the data collected.

“Such a comprehensive comparative study means that we can expect to have access to reference tools within a few years.  This will make radon monitoring safer and more effective,” he explains.

COIRA was formed in 2015 and has five member associations: ERA (the European Radon Association), AARST (the American Association of Radon Scientists and Technologists), CARST (the Canadian Association of Radon Scientists and Technologists), UKRA (the UK Radon Association) and NGRA (the Nordic Group of Radon Associations).

For more information on the project, visit www.coiraradon.com.

You can read more about Radonova here.

Finland ahead of the rest of Europe

By Workplace No Comments

-Radon measurement in the workplace is commonplace 

It’s not just in school education that Finland is ahead of the rest of Europe. When it comes to measuring radon in workplaces, they are a step ahead there too. Measuring radon in Finnish workplaces has been commonplace for a number of years for Radonova’s partner Suomen radonhallinta.  

Even before the new Radiation Protection Act was introduced on 1 June this year, the Swedish Work Environment Authority imposed the requirement that the hygienic limit value for radon (0.36 MBqh/m3) must not be exceeded in Swedish workplaces. And yet there were only around 3,000 instances of workplace measurement in Sweden during 2017, compared with around 70,000 instances of measurement in homes. In the rest of Europe also there is less workplace measurement compared with measurement in homes.

“It is hard to say exactly how much workplace measurement we have performed, but it is well into the thousands. Then of course there are several other operators also measuring radon in workplaces. In Finland there are around 60 high-risk areas where employers are obliged to measure radon in the workplace. Considering that radon is reckoned to cause lung cancer in 300 to 400 Finns every year, there is of course every reason to comply with the existing regulations,” comments Jarkko Ruokonen at Suomen radonhallinta.

Common cause of lung cancer

“Although we are seeing increased demand for workplace measurement this year, it is clear that a lot of workplaces will not manage to comply with the new legal requirements. Here it seems as if Finland has been quick to take the radon issue seriously. Just as in the rest of Europe, radon is, after smoking, the single biggest cause of lung cancer in the population. If we are to bring the figures down, greater efforts are required, as is cooperation between employers, public authorities and private operators,” comments Karl Nilsson, CEO of Radonova Laboratories.

“If you haven’t already taken radon measurements at your workplace then it is high time you did so. Quite apart from the fact that as an employer you are risking exposing your employees to a serious health hazard, there can be serious repercussions for employers who do not comply with the law. Here I absolutely think that the rest of Europe should be aiming to take the radon issue at least as seriously as Finland does,” concludes Karl Nilsson.

finland

Jarkko Ruokonen at Suomen radonhallinta measures radon at a workplace in Finland. “Our cooperation with Radonova is going really well. They have a modern lab that is certified in accordance with ISO17025, reliable products and excellent customer service.”

House – Why does radon exist in homes and where does radon come from?

By Home No Comments

When you own a house or intend to buy a house, you often hear talk about radon values and the fact that you need to check them for health reasons. But where does radon come from?

Radon is a gas that occurs naturally in soil and in bedrock. It is a so-called “inert” gas and is an element with the chemical symbol Rn and atomic number 86 in the periodic table. The property that makes radon damaging to health is the fact that it is a radioactive substance. Radioactivity means that radon emits radiation, so-called “ionising” radiation which affects biological systems. The element radon is part of the decay chain, which includes the elements uranium and radium (which are also radioactive).
Ionising radiation can damage cells and cause cell death and can destroy DNA molecules in the body. Which can lead to mutations and therefore to cancer. Lung cancer in particular is a form of cancer that can be caused by radon radiation.

Where does radon in a house come from?

Radon originally comes from uranium and radium, which occur naturally in bedrock. If a building is constructed on such land, and particularly if the building also has a basement, there can be a problem with radon. The parts of the building that come into contact with the ground can let in radon from the surroundings if they are not sealed.

Investigation and measurement

It is easy to measure and investigate radon in a home. A radon laboratory will help by sending out measurement boxes for radon. You simply hang these from the ceiling in the rooms you want to measure radon in. The measurement must go on for a few months. Then the radon boxes are sent in to the laboratory for analysis and you get a radon value for each room. The limit value for radon is currently 300 Bq/m3 in dwellings. If it is higher than that, you should carry out some form of radon degasification.

house

Radonova makes first delivery of radon detectors to Africa

By News No Comments

Radonova’s first project on the African continent.

Swedish Radonova Laboratories has received an order from the IAEA for radon detectors to monitor radon in Cameroon.

The contract is not only for the delivery of detectors, but also for the analysis of radon samples.

As a result, Radonova is delivering materials and services for use on the African continent for the first time.

Radonova

“This order shows that radon is a global health problem. There’s a growing awareness of this issue in countries that haven’t paid that much attention to this in the past. The IAEA may not be a government authority, but it still has great influence and stringent demands when it comes to quality, reliability and support. We also know that we won this contract in competition with several other players and the IAEA chose us as the best option,” says Karl Nilsson, CEO of Radonova Laboratories.

“Only a few months ago we signed our first co-operation agreement in Asia. Naturally, it’s a pleasure to continue our international expansion into another continent. Regardless of the environment being tested, radon monitoring and analysis must always be carried out safely and reliably,” Nilsson concludes.

For further information on radon and radon monitoring, visit www.radonovalaboratories.com
IAEA stands for the International Atomic Energy Agency. For further information, visit www.iaea.org